

Journal of Alloys and Compounds 408-412 (2006) 842-844

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Infrared-to-visible upconversion of rare-earth doped glass ceramics containing CaF₂ crystals

Yuki Kishi, Setsuhisa Tanabe*

Graduate School of Human and Environment Studies, Kyoto University, Kyoto 606-8501, Japan

Received 30 July 2004; received in revised form 8 December 2004; accepted 13 January 2005 Available online 6 June 2005

Abstract

Oxy-fluoride glass ceramics containing CaF₂ crystals doped with YbF₃–LnF₃ (Ln = Er, Tm) were prepared by heat-treatment from SiO₂–Al₂O₃–CaO–CaF₂ glasses. The upconversion emission spectra of Er³⁺ and Tm³⁺ ions in the visible range were measured by 970 nm pumping. In the spectrum of the Er doped sample, 540 nm upconversion band due to the ${}^{4}S_{3/2}{}^{-4}I_{15/2}$ and 660 nm band due to the ${}^{4}F_{9/2}{}^{-4}I_{15/2}$ were observed. In the Tm doped sample, a blue upconversion emission band due to the ${}^{1}G_{4}{}^{-3}H_{6}$ was observed at 480 nm as well as an 800 nm band. The intensity of these upconversion emissions were very weak in the corresponding as-made glasses. These results indicate that rare-earth ions are incorporated in the CaF₂ crystal phases after crystallization and the energy transfer efficiency from Yb³⁺ to Er³⁺ or Tm³⁺ are dramatically improved.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Upconversion; Optical properties; Yb3+; Er3+; Tm3+; Energy transfer

1. Introduction

For the candidate materials of the optical devices such as a laser, phosphors and optical amplifier, rare-earth doped oxide or fluoride glass and glass ceramics have been used. Fluoride glasses and crystals are highly transparent materials, from the near-UV to the middle IR, with excellent rare-earth ion solubility and low phonon energy, making them excellent candidates as laser host materials [1]. On the other hand, the silicate glasses have higher phonon energy and limited rare-earth solubility. However, fluoride glasses have less favourable chemical, thermal and mechanical properties, compared to oxide glasses, and thus, are hard to prepare and to handle. In fact, most oxide glasses have better chemical and mechanical stabilities and are easily fabricated into rods and optical fiber than fluoride glasses [2]. To combine advantages of both glasses, oxy-fluoride glass ceramics that has fluoride crystal phase in oxide glass matrix, were suggested. In 1993, Wang and Ohwaki [3] reported a transparent oxy-fluoride glass ceramics based on $Pb_xCd_{1-x}F_2$ crystal phase containing Er^{3+}

and Yb³⁺ ions, which is dispersed in a continuous aluminosilicate glass matrix. This glass ceramic material was shown to combine advantages of rare-earth doped fluoride crystals with the ease of forming and handling of conventional oxide glasses. With an excitation wavelength of 970 nm, the measured upconversion emission intensity of Er³⁺ in the glass ceramics was 100 times higher than that of the precursor oxy-fluoride glass. However, the lead and cadmium in this oxy-fluoride glass ceramic material are designated as specified toxic substances by the Restriction Hazardous Substance (RoHS) in 2006. Therefore, an alternative material of PbF₂ and CdF₂ is needed for the environmental issue. In this study, we selected CaF₂ for an alternative material of PbF₂, fabricated rare-earth (Er, Tm) doped oxy-fluoride glass ceramics containing CaF₂ crystal and investigated the optical properties of Er³⁺ and Tm³⁺ in the oxy-fluoride glass ceramics.

2. Experimental procedure

Oxy-fluoride glasses in the system $45SiO_2-20Al_2$ O₃-10CaO-22CaF₂-2YbF₃-1ErF₃ (-20CaF₂-5YbF₃-0.05-TmF₃) were prepared by melting method; 20 g batches in

^{*} Corresponding author. Tel.: +81 75 753 6832; fax: +81 75 753 6634. *E-mail address:* stanabe@gls.mbox.media.kyoto-u.ac.jp (S. Tanabe).

 $^{0925\}text{-}8388/\$-$ see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.01.096

a platinum crucible were melted at 1300 °C for 1 h. The glass transition temperature ($T_g = 620$ °C) and the onset of crystallization temperature ($T_x = 702$ °C) were measured by the differential thermal analysis (DTA) measurement (Rigaku TG-DTA TG8120). Glass ceramics containing CaF₂ were prepared by heat-treatment at 700–750 °C for 4 h. The crystal phases, which were precipitated in the oxide glass matrix, were detected by the X-ray diffraction (XRD) measurement (Rigaku RINT1400). The upconversion emission of Er³⁺ and Tm³⁺ in the visible range of oxy-fluoride glass and glass ceramics were measured with the InGaAs laser diode (SDL-6362-PI) for 970 nm pumping, the monochromator (Nikon G-250) controlled with computer and the photo-multiplier.

3. Results and discussion

Fig. 1 shows the XRD pattern of Tm³⁺ doped glass and glass ceramics heat-treated at 750 °C. All the diffraction peaks were assigned to those of cubic CaF₂ crystal. The lattice constant calculated from the peak in Fig. 1 was 5.473 Å, larger than that of pure CaF₂ (5.462 Å, JCPDS Card No. 35-0816). The CaF₂ crystal phases containing Yb^{3+} or Ln^{3+} ions are considered to precipitate in both systems by heat-treatment at 750 °C for 4 h because the CaF₂-LnF₃ system has compositional range of solid solutions in the phase diagram and the lattice constant is lager than pure CaF₂. Fig. 2 shows the heat-treatment temperature dependence of upconversion spectra in visible region of Er³⁺ doped and Tm³⁺ doped glass and glass ceramics. The upconversion emission of Er^{3+} at 540 nm (${}^{4}S_{3/2} - {}^{4}I_{15/2}$: green) and 660 nm (${}^{4}F_{9/2} - {}^{4}I_{15/2}$: red) were observed in glass ceramic samples. These upconversion emission bands were very weak in the corresponding as-made glasses. The emission intensity of 660 nm was larger than that of 540 nm in all the Er doped samples. Generally, the sensitization of Er^{3+} with Yb^{3+} is favourable for infrared to green and red upconversion [3-5]. It is concluded that the Er³⁺ and Yb³⁺ ions are incorporated into the CaF₂ crystal phases by heat-treatment. From these results, the energy transfer in the Yb^{3+} – Er^{3+} can occur efficiently because the distance between Yb^{3+} and Er^{3+} ions decreased after crystallization. Typical upconversion mechanisms in the Yb³⁺-Er³⁺

Fig. 1. XRD pattern of Tm doped as-made glass and glass ceramics heat-treated at 750 $^{\circ}\mathrm{C}$ for 4 h.

Fig. 2. Upconversion spectra of Er doped and Tm doped oxy-fluoride glass and glass ceramics heat-treated at 700–750 °C for 4 h. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

and $Yb^{3+}-Tm^{3+}$ co-doped system are shown in Fig. 3. The Yb^{3+} ion was excited to the ${}^{2}F_{5/2}$ level by pumping laser. Twostep excitation to the ${}^{4}I_{11/2}$ and the ${}^{4}F_{7/2}$ levels in Er³⁺ comes from the energy transfer from Yb³⁺. Fig. 4 shows temperature dependence of the integrated intensity of Er^{3+} : 540, 660 nm and Tm: 480, 650 nm and 800 nm emissions. The 660 nm integrated intensity of Er³⁺ increased more drastically than the 540 nm with increasing heat-treatment temperature. In many studies, a variety of the upconversion emission of Er^{3+} and Tm^{3+} were reported [6–10]. In this case, the reason why the red (660 nm) upconversion of Er³⁺ increased was considered. By incorporation of Er³⁺ ions into the CaF₂ crystal phases, the energy transfer among the neighbour Er^{3+} ions from ${}^{4}S_{3/2} - {}^{4}F_{9/2}$ to ${}^{4}I_{9/2} - {}^{4}F_{9/2}$ occurred efficiently (shown in Fig. 3). Increasing in the concentration of Er^{3+} ions in CaF₂ crystal phases probably caused this. Therefore, it can be considered that the ratio of population at the ${}^{4}F_{9/2}$ level (the initial level of 660 nm) increased.

In Fig. 2, the upconversion spectra of Tm^{3+} at 480 nm (${}^{1}G_{4}-{}^{3}H_{6}$: blue), 650 nm (${}^{1}G_{4}-{}^{3}F_{4}$: red) and 800 nm (${}^{3}H_{4}-{}^{3}H_{6}$) are shown. As shown in Fig. 3, Tm^{3+} ions can

Fig. 3. Energy level diagram of Er^{3+} , Yb^{3+} and Tm^{3+} ions and upconversion mechanism. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 4. Temperature dependence of integrated intensity of the emission band in Er doped and Tm doped glass and glass ceramics. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

be usually excited to the ${}^{1}G_{4}$ level with three-step by the energy transfer from Yb³⁺ [11]. The emission intensity of 480 nm was stronger than that of 800 nm for the samples heattreated at above 730 °C, while the ratio was inverted for the 700 °C and as-made glass. As shown in Fig. 4, the integrated intensity of Tm³⁺ increased with increasing heat-treatment temperature. Because Yb³⁺ and Tm³⁺ ions were incorporated into CaF₂ crystal phases and the distance between these ions decreased, the energy transfer in these ions (Fig. 3.) occurred efficiently. In addition, the lower phonon energy of CaF₂ crystal phase is considered to be better for upconversion fluorescence. Generally, it is known that the phonon energy of Si–O is 1000 cm^{-1} and that of Ca–F is 400 cm^{-1} . The lower phonon energy of the matrix reduces the non-radiative decay rate [12]. Therefore, the CaF₂ crystal is favourable for the upconversion efficiency of Er³⁺ and Tm³⁺ ions.

4. Conclusion

Oxy-fluoride glass ceramics containing CaF_2 crystal were fabricated and the upconversion emission spectra of Er^{3+}

and Tm³⁺ were investigated. By heat-treatment between 700 and 750 °C, the upconversion emission intensity of Er³⁺ and Tm³⁺ increased, while the intensity of these upconversion emissions were very weak in the corresponding asmade glasses. These results indicate that rare-earth ions are incorporated in the CaF2 crystal phases after crystallization and the energy transfer efficiency from Yb^{3+} to Er^{3+} or Tm³⁺ was dramatically improved. The improved efficiency and the change of relative intensity ratio of 540 nm/660 nm bands in the Er-samples indicates that the average distance between Ln³⁺ ions are much shortened and the local phonon energy was decreased leading to higher upconversion efficiency. We conclude that both Ln³⁺ ions are condensed in the precipitated CaF₂ crystals leading to much lower multi-phonon decay loss of the excited levels of active ions.

References

- R.M. Almeida, Fluoride glasses, in: K.A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earth, vol. 15, Elsevier Science Publishers, 1991, p. 287.
- [2] P.A. Tick, N.F. Borrelli, L.K. Cornelius, M.A. Newhouse, J. Appl. Phys. 78 (1995) 6367.
- [3] Y. Wang, J. Ohwaki, Appl. Phys. Lett. 63 (1993) 3268.
- [4] F. Auzel, J. Lumin. 45 (1990) 341.
- [5] Y. Mita, K. Hirama, N. Ando, H. Yamamoto, S. Shionoya, J. Appl. Phys. 74 (1993) 4703.
- [6] H. Hayashi, S. Tanabe, T. Hanada, J. Appl. Phys. 89 (2) (2001) 1041.
- [7] S. Tanabe, H. Hayashi, T. Hanada, N. Onodera, Opt. Mater. 19 (2002) 343.
- [8] S. Tanabe, S. Yoshii, K. Hirao, N. Soga, Phys. Rev. B 45 (1992) 4620.
- [9] S. Tanabe, H. Hirao, Trans. IEE Jpn. 114 (6) (1994) 425.
- [10] D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, J.E. Townsend, A.C. Tropper, Opt. Commun. 78 (2) (1990) 187.
- [11] Y. Guyot, R. Moncorgé, L.D. Merkle, A. Pinto, B. MeIntosh, H. Verdun, Opt. Mater. 5 (1996) 127.
- [12] T. Sakamoto, in: S. Sudo (Ed.), Erbium-doped Optical Fiber Amplifier, Oputoronikusu, Tokyo, 1999, p. 32.